M.Sc. CHEMISTRY FIRST SEMESTER INORGANIC CHEMISTRY-I

MSC-103

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.

(PART-A: Objective)

Time : 20 min.

Ch	oose the corre	ect answer	from the fol	llowing:	$1 \times 20 = 20$	
1.	Which is the Te (L,S)=(3, 3/2)?	erm Symbol	for state with	angular momentum quantum nur	nber	
	a. ³ D .	b. ³ F	c. ⁴ F	d.4 G		
2.	Identify the gr	ound term f	rom the set of	Terms- ¹ P, ³ P, ³ F, ¹ G.		
	a. ¹ P	b. ³ P	c. ³ F	d. 1G		
3.	The colour of a	complex in	solution is blu	ue, therefore it absorbs:		
	a. Blue light			b. Red light		
	c. Green light			d. Orange light		
4.	Which has the smallest CFSE amongst the following complex? $[Cr(H_20)_6]^{2+}$, $[Fe(H_20)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Ru(CN)_6]^{3-}$					
	a. $[Cr(H_20)_6]^{-2}$	+		b. [Fe(H ₂ 0) ₆] ³⁺		
	c. [Fe(CN) ₆] ³⁻			d. [Ru(CN) ₆] ³⁻	-	
5.	The spin only a] ³⁻ , [Cr(NH ₃) ₆] ³	magnetic mo + are respect	oment for the tively:	complex [Co(NH ₃) ₆] ³⁺ , [Fe(H ₂ 0) ₆] ²	²⁺ , [Fe(CN) ₆	
	a. 0, 4.9, 1.73,	3.87 B M		b. 0, 4.9, 3.87, 1.73 BM		
	c. 0, 1.73, 4.9, 3	3.87 B M		d. 3.87, 0, 4.9, 1.73 B M		
6.	The structure of magnetite Fe ₃ O ₄ is inverse spinel. Therefore the formula is:					
	a. (Fe ²⁺) _T (Fe ³⁺	+) ₀ O ₄		b. $(Fe^{3+})_T$ (Fe ²⁺ ,Fe ³⁺) $_{\circ}$ O ₄		
	c. (Fe ³⁺) _T (Fe ²⁺	+,Fe ²⁺) _o O ₄		d. $(Fe^{2+})_T$ (Fe ²⁺ , Fe ³⁺) _o O ₄		
7.	The pink colou	r of MnO ₄ - s	solution is bec	ause of charge transfer from:		
	a. d →d			b. $M \rightarrow L$		
	$c. L \rightarrow M$			$d. \vdash \rightarrow \vdash$		
8.	The observed r calculations ba	nagnetic mo sed on J valı	oment of whic ue?	h of the two lanthanides does not	agree to	
	a. Ce ³⁺ and Sn	n ³⁺		b. Ce ³⁺ and Lu ³⁺		
	c. Sm ³⁺ and G	d ³⁺		d. Gd ³⁺ and Lu ³⁺		
9.	Which of the following is wrong regarding the structure of diborane? a. Four terminal H atom and two bridging H atom.					
	b. Terminal H	atom and B1	ie in a plane.			
	c. Four two cei	ntre bond, tw	o three centre	bond.	***	
	u. b is sp ² hybr	luiseu.				
10.	Boron compou	inds behave	s as Lewis aci	d because of their:		
	a. Acidic natu	re		b. Electron deficiency		
	c. lonic prope	rty		d. Smaller size		

Marks:20

Full Marks: 70

1

11.	Structure of XeOF4 is: a. Trigonal bipyramidal c. Square pyramidal			b. Tetrahedral d. Square planar			
12.	Hypoxic water l a. 5-7 mg/L c. 10-12 mg/L	have DO:		b. 3-4 mg/L d. 0.5-2 mg/1	L		
13.	Si-O bond in sili a. HCl	ica can be br b. HNO ₃	oken on t	reatment with: c.BF ₃	d. HF		
14.	Primary unit in a. (SiO ₃) ²⁻	cyclic silicat b. (SiO ₂) _n	e is:	c. (Si ₂ O ₇) ⁶⁻	d. (SiO ₄) ⁴⁻		
15.	Formula of inor a. (BN) ₃ c. B ₃ N ₃ H ₃ Cl ₃	ganic benzei	ne is:	b. B ₃ N ₃ H ₃ d. B ₃ N ₃ H ₆			
16.	Which of the fol a. Mg ₂ C ₃	llowing com b. Al4C3	pound be	long to allylide c. CaC2	carbide category? d. Be ₂ C		
17.	The shape of the a. Distorted oct c. Trigonal bipy	e molecule X ahedral ⁄ramidal	eO ₂ F ₂ is?	b. Square pla d. Tetrahedra	inar al		
18.	The number of 1 a. 2, 0 and 1 c. 2, 1 and 1	lone pair of e	electron o	n the central ato b. 1,0 and 1 d. 2,1 and 0	om in [BrF4] ⁻ , XeF6?		
19.	The decreasing of a. NF ₃ >NH ₃ >H c. H ₂ O >NH ₃ >	order of dipo 2O NF3	ole mome	nt of molecule is: b. NH ₃ > NF ₃ >H ₂ O d. NF ₃ > H ₂ O > NH ₃			
20.	The total numbe a. 0 b.	er of lone pai 3	r of electr c. 6	ons in I ₃ - d. 9			
			=	= = * * = =			

(<u>PART-B:Descriptive</u>)					
Tin	Marks: 50				
1.	a) Describe and explain the Jahn-Teller effect in Octahedral complexes.b) Discuss the bonding involved in the formation of diborane on the basis of MO approach.	5+5=10			
2.	Describe the Crystal field Theory as applied to Octahedral complexes and state the factors that determine the CFSE. What is the weakness of the theory?	10			
3.	A solution of Ni(H ₂ O) ₆ ²⁺ shows three transitions at 8500, 13,800 and 25, 300 cm ⁻¹ . Draw the Orgel diagram for Ni ²⁺ ion and make assignments of the bands. Calculate the Δo , x and B parameters. If the free ion B value is 1030 cm ⁻¹ , what is your observation?	10			
4.	 a) Explain what is quenching of orbital angular momentum. b) Explain spin state cross over in certain complexes. 	· 5+5=10			
5.	 a) Determine the skeletal structure of following carbonyl cluster: i. C₂B₁₀H₁₂ ii. C₂B₄H₈ iii. C₂B₇H₁₃ b) Give two methods of preparation of borazine. c) What are metal carbides and give one methods of preparation of salt like carbides? How salt like carbides are classified, explain with examples? d) What are phosphazenes? Give one method of preparation of hexachlorocyclotriphosphazenes and also write its structure? 	3+2+3+2=10			
6.	 a) What are the harmful effects of smog? Discuss the mechanism of photochemistry of smog. b) What is chemical oxygen demand (COD) and threshold limiting value (TLV)? c) Discuss the chemical properties of soil. 	4+2+4=10			
7.	 a) State and explain bent rule b) Define electronegativity. How electronegativity value can be determined using the following scale? i) Pauling Scale ii) Mulliken Scale 	3+1+3+3=10			
8.	 a) Explain using Walsh diagram why the first excited state of BeH₂ is bent, whereas that of BH₂ is linear. b) Explain the molecular energy level for NO and CO molecule using Molecular Orbital Theory (MOT). 	4+6=10			
= = *** = =					