ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number	
Course	Semester
Paper Code	Paper Title
Type of Exam:	(Regular/Back/Improvement)

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

M.Sc. CHEMISTRY THIRD SEMESTER APPLICATIONS OF SPECTROSCOPY **MSC-304**

Duration : 3 hrs.

Time : 20 min.

Full Marks: 70

Marks:20

1X20=20

(<u>PART-A: Objective</u>)

Choose the correct answer from the following:

1.	What is the relation between restoring force, a. f = -kq c. f = kq2	f to the displacement q in Hooke's law? b. f = kq d. f = -kq2
2.	The vibrations, without a center of symmetry a. Infrared but inactive in Raman c. Raman and IR	are active in which of the following region?b. Raman but inactive in IRd. Inactive in both Raman and IR
3.	What is the order of decreasing vibrational fr and C – H? a. C-H, C-C, C-O, C- Cl, C-Br c. C-O, C-H, C-Br, C- Cl, C-C	equency for C – Cl, C – Br, C – C, C – O b.C- Cl, C-Br, C-C, C -H, C-O d.C-Br, C- Cl, C-C, C-O, C-H
4.	In IR spectroscopy, the vibration between atoa. The overall molecular weight of the moleculec. Dipole moments between atoms	b. The number of protons in a nucleusd. The movement of electrons to higher energy levels
5.	Which of the following functional groups exh (IR) spectrum? a. Ester c. Aldehyde or ketone	nibits the highest frequency in an infrared b. Alcohol d. Nitrile
6.	In the 400 MHz ¹ H NMR Spectrum, an organ lines of the doublet are at δ 2.38 and 2.3. The a. 3 Hz c. 9 Hz	ic compound exhibited a doublet. The two coupling constant 'J' value is: b .6 Hz d .12 Hz

7. The correct match of the ¹H NMR chemical shift value δ of the following species/compounds are:

b. I: 9.2; II: 7.2; III: 5.4 **d.** I: 7.2; II: 9.2; III: 5.4

- 8. Which of the following ¹H-NMR spectrum of compound with molecular formula C₄H₉NO₂ shows delta 5.30 (broad, IH), 4.10 (q, 2H), 2.80 (d, 3H), 1.20 (t, 3H) ppm?
 a. CH₃NHCOOCH₂CH₃
 b. CH₃CH₂NHCOOCH₃
 c. CH₃OCH₂CONHCH₃
 d. CH₃CH₂OCH₂CONH₂
- **9.** A proton H_b is coupled to four equivalent protons Ha. The multiplicity and the relative intensity of lines in the signal H_b is:

a. Doublet, 1 : 4	b. Triplet, 1 : 4 : 6
c. Quintet, 1 : 4 : 6 : 4 : 1	d. Quartet, 1 : 4 : 6 : 4

10. Which among the following is not a NMR active?

a. ¹ H	b. ¹³ C
c. ¹⁶ O	d. ¹⁹ F

- **11.** The compound which will show a prominent M+2 peak in EI-MS is:
 - a. 4-Chlorophenolb. 4-nitrophenolc. 4-aminophenold. None of these
- **12.** The molecular ion peak of the product '**A**' for the following reaction will be in the EI⁺ MS at

F	$2 \text{ SbF}_5 \rightarrow A$	
a. 52		b. 104
c. 123		d. 142

13. The base peak of benzaldehyde in EI-MS is:

a. [M-15] ⁺	-	b. [M-1]+
c. [M] ⁺		d. 77

14. The ionization of compound in FAB-MS is done by the high energy beam of:

a. Photon	b. Electron
c. Inert Gases	d. Ar ⁺

- 15. Which of the following will show base peak within M, [M+2], and [M+4] peaks in the EI-MS?
 a. 4-Bromo-3-chlorophenol
 b. 4-bromobenzylbromide
 c. 2,4-dibromotoluene
 d. All of them
- **16.** DEPT-135 of 4-Chlorobenzaldehyde will have total peak:

a. 3	b. 4
c. 5	d. 6
The peak of D ₄ -1,2-dichlo	roethane in ¹³ C NMR will be:
<u> </u>	1 0

a. Quintetb. Quartetc. Tripletd. Singlet

18. Which one is correct for the following molecule regarding its NMR study?

 $\begin{array}{c} OH \\ H_1 & O \\ HO & OH \\ H_2 & H_3 \end{array}$ a. H₁-H₂: COSY & H₂-H₃ NOESY

c. H₁-H₃: COSY & H₂-H₃ NOESY

17.

b. H₁-H₂: NOESY & H₂-H₃ COESY **d.** H₁-H₃: NOESY & H₂-H₃ COESY **19.** If a molecule $(C_xH_yN_z)$ shows molecular ion peak in EI-MS m/z = 80, a distinct peak at 2250 cm⁻¹ in IR and a singlet (δ = 2.8 ppm, 2H) in ¹H-NMR, and DBE = 4, the correct formula will be:

a. $C_3H_2N_3$	b. C ₄ H ₄ N ₂
c. $C_4H_8N_2$	$\mathbf{d}.\mathbf{C}_{5}\mathbf{H}_{6}\mathbf{N}$

20. DBE (double bond equivalence) of the following molecule will be $C_{16}H_{16}N_2O_2$

a. 11	b. 10
c. 9	d. 8

-- --- --

(<u>PART-B : Descriptive</u>)

Ti	me : 2 hrs. 40 min.					Marks : 50
	[Answer question no.1 & any four (4) from the rest]					
1.	a) Write the correct ind suitable justification	for	sing order o the organic	of IR stretch	ing frequencies with ls having the	3
	 b) Depict the EI-MS of benzaldehyde and comment on the base peak. c) In the 60 MHz ¹H NMR of acetone the signal for methyl proton appears at 122.4 Hz downfield from TMS. Determine the chemical shift of the signal in δ scale. What should be the resonance frequency 				2 3	
	 d. The CDCl₃ shows a gives triplet peaks. I 	sing Expl	glet in ¹ H-N ain it.	MR, where	as that in ¹³ C-NMR	2
2.	a) What are the factors carbonyl bonds dep	s on ends	which the r s on?	normal IR s	tretching frequency of	3
	b) Match the following	g ket	tone with th	neir IR stret	ching frequencies-	2
		1	o	1780 cm ⁻¹		
		2	°	1740 cm ⁻¹		
		3	 o	1700 cm ⁻¹		
			°	1680 cm ⁻¹		
	c) Write the approxim	ate I	R stretching	g frequency	of (i) alcohol (ii)	2
	d) The IR stretching fr [Mn(CO) ₅]. Explain	con eque with	npound and ency of [Cr(n suitable ju	CO) ₆] is lov stification.	wer than that of	3
3.	a) Explain why certain NMR?	nuo	clei can be c	letected and	d others cannot in	3
	b) Why "F" is unable tc) Explain the term wi(ii) Coupling constartthe two depends on	to gi th su th us oper	ve a signal i uitable exan ed in NMR rating frequ	in ¹ H NMR nple- (i) Ch spectrosco ency?	? emical shift and py. Which one among	2 3
4	d) Why TMS is chosen	as a	a standard o	of reference	in NMR spectroscopy?	2
4.	a) Explain why ¹ H-NN field whereas that o	1K s f ace	pectrum of etylene is ob	benzene 1s served at a	observed at a lower higher field strength.	3

	b) What spin-spin coupling patterns do you expect for each distinct set of H nuclei in the following molecules: CH ₃ CHCl ₂ , CH ₃ CHClCH ₃ and CH ₃ OCH ₂ CH ₃ .	3
	 c) (i) How many NMR signals do you expect for pure ethanol? Also discuss the splitting patern. (ii) Explain clearly what will happen if the ethanol contains moisture? 	4
5.	a) An organic compound $C_7H_{12}O_2$ shows the following data in the ¹ H NMR spectra- δ 7.10 (1H, dt, <i>J</i> = 16 and 7.2 Hz), 5.9 (1H, dt, <i>J</i> = 16 and 2 Hz), 4.1 (2H, q, <i>J</i> = 7. 2 Hz), 2.1 (2H, m), 1.25 (3H, t, <i>J</i> = 7. 2 Hz), 0.9 (3H, t, <i>J</i> = 7. 2 Hz) ppm. Predict the correct structure of the organic compound from the given data.	3
	b) ¹ H NMR of olefinic compound often shows the presence of two isomers (E and Z) having different J-value ranging from	2
	approximately 10-17 Hz. How could you differentiate them with the help of NMR spectroscopy?c) What is retro Diels-Alder cleavage? Explain with example.	2
	d) Discuss the McLafferty rearrangement in EI-MS with suitable example.	3
6.	a) Draw the all possible isomers of formula C ₅ H ₁₂ and show their fragmentation pattern in EI-MS. Depict their most probable mass spectrum (EI-MS). Find out the base peak of each of the isomer.	6
	b) Identify the active species which are responsible for base peaks in EI-MS of ortho-xylene and ethylbenzene.	4
7.	a) The proton NMR spectrum of an organic compound-A with exact	6

7. a) The proton NMR spectrum of an organic compound-A with exact mass of 144.0786 is shown below. The coupling constant for the triplet at 1.25 ppm is of the same magnitude as the one for the quartet at 4.15 ppm. The pair of distorted triplets at 2.56 and 2.75 ppm are coupled to each other. The infrared spectrum displays strong bands at 1720 and 1738 cm⁻¹. The proton-decoupled ¹³C-NMR and the DEPT experimental results are shown below. Draw the structure of this compound with justification.

Normal Carbon	DEPT-135	DEPT-90	¹ H NMR in CDCl ₃ , 200 MHz
14 ppm	Positive	No peak	
28	Negative	No peak	
30	Positive	No peak	
38	Negative	No peak	
61	Negative	No peak	
173	No peak	No peak	
207	No peak	No peak	2.06 2.07 2.07 2.97 2.97
			4.0 3.5 3.0 2.5 2.0 1.5 1.0 δ (ppm)

b) Depict the COSY (¹H-¹H) spectrum of the organic compound-A.

 a) A halogenated hydrocarbon compound-X has one isomer 'Y'. Compound-X has the following spectroscopic information. Identify the compound-X. 4

6

b) Write the structure of the isomeric compound-Y and depict its ¹H-NMR as well as proton decoupled ¹³C NMR spectra.

= = *** = =

4