ODD SEMESTER EXAMINATION: 2020-21

Exam ID Number					
Course	Semester				
Paper Code	Paper Title				
Type of Exam:	(Regular/Back/Improvement)				

Important Instruction for students:

- 1. Student should write objective and descriptive answer on plain white paper.
- 2. Give page number in each page starting from 1st page.
- 3. After completion of examination, Scan all pages, convert into a single PDF, rename the file with Class Roll No. **(2019MBA15)** and upload to the Google classroom as attachment.
- 4. Exam timing from 10am 1pm (for morning shift).
- 5. Question Paper will be uploaded before 10 mins from the schedule time.
- 6. Additional 20 mins time will be given for scanning and uploading the single PDF file.
- 7. Student will be marked as ABSENT if failed to upload the PDF answer script due to any reason.

B.Sc. CHEMISTRY FIRST SEMESTER INORGANIC CHEMISTRY-I BSC-101

(<u>PART-A: Objective</u>)

Duration: 3 hrs.

Time : 20 min.

Choose the correct answer from the following:

1.	Stoichiometric compounds are those where ta. Not according to chemical formulac. Exactly according to the chemical formula	he number of different types of atoms are: b. Are as in Berthollide compounds d. None of the above
2.	 o-nitro phenol has: a. Higher melting point than p-nitro phenol c. Has same melting point as p-nitro phenol 	b. Lower melting point than p-nitro phenold. None of the above
3.	 For an ionic compound to dissolve: a. The Madelung Energy must be overcome c. Two ions must have equal charges 	b. The two ions must have different lattice energiesd. None of the above
4.	Lanthanum is a: a. s-block element c. d-block element	b. p-block elementd. f-block element
5.	Radius of a cation is always:a. Smaller than that of the atom of the elementc. Same as the atom of the element	b. Larger than that of the atom of the elementd. None of the above
6.	According to Fajan, a small positive charge fa a. Coordination c. Covalency	avours: b. Electrovalency d. None of the above
7.	With increase in atomic number, electron affia. Increases along a groupc. Remains unchanged in a group or period	nity: b. Increases along a period d. None of the above
8.	Second ionization potential is: a. Smaller than first ionization potential c. Larger than third potential	b. Larger than first ionization potential d. None of the above
9.	The number of lone pairs in the Lewis diagra HF are: a. 1, 2, 3, 4 c. 0, 2, 3, 4	m of following compounds CH ₄ , NH ₃ , H ₂ O, b. 0, 1, 2, 3 d. 1, 2, 4, 5

Marks:20

Full Marks: 70

1X20=20

 10. The structure of BeH₂ structure can be explained a. sp c. sp³ 	ined by Hybridization in Be-atom. b. sp ² d. dsp ²
11. According to VSEPR theory the structure ofa. T-shapec. TrigonalPlanar	ClF ₃ is: b. Tetrahedral d. Linear
12. According to MO theory, The HOMO of oxya. o-Bonding electronc. п-Bonding electron	ygen molecule contains two: b. σ*-Antibondingelectron d. π*-Antibonding electron
 13. A cricket ball weighing 100g is to be located velocity? a. 5.27x10⁻²³ ms-1 c. 4.27x10⁻²³ ms-1 	within 0.1A ⁰ . What is the uncertainty in its b. 5.27x10 ⁻²⁰ ms-1 d. 3.27x10 ⁻²⁵ m
14. The effective nuclear charge felt by a 3d electric a. 4.60c. 2.50	etron of chromium atom is: b. 5.60 d. 4.00
15. Electrovalent compounds are:a. Low meltingc. Conductors in the fused state	b. Insoluble in polar solventsd. None of the above
16. When an element of very low ionization poleelectron affinity:a. A covalent bond is formedc. A metallic bond is formed	ential reacts with an element of very high b. An ionic bond is formed d. No bond is formed
17. Factors affecting the value of lattice energy:a. The size of the ionc. The size of the ion and the charge of the ion	b. The charge of the ion d. None of these
18. An electron is confined in a one dimensional electron volts:a. 37.6 eVc. 32.6 eV	l box of length 1A ⁰ . Its ground state energy in b. 47.6 eV d. 35.6 eV
 19. An electron has a speed of 300 ms-1 accurate locating its position? a. 1.93x10⁻² m c. 1.93x10⁻³ m 	e upto 0.001%. What is the uncertainty in b. 2.93x10 ⁻² m d. 4.93x10 ⁻⁴ m
20. The effective nuclear charge felt by 1s electroa. 1.9c. 1.7	on of helium atom? b. 2.3 d. 2.5

-- --- --

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		
	[Answer question no.1 $\&$ any four (4) from the rest]	
1.	a. What are the defects observed in crystals?b. What is Schottky defect? How does it differ from Frenkel defect?c. How do you differentiate among conductor, semi-conductor and insulator?	2 2+2=4 4
2.	 a. Give a brief account of ion-dipole interaction with suitable example. b. What are screening effect and effective nuclear charge? c. Calculate the effective nuclear charge of aluminium (13) on the basis of Slater empirical formula 	2 2 2
	 d. Describe how Allred Rochow worked out electronegativity value of an atom in terms of covalent radius, charge on the electron and effective nuclear charge? 	2
	 e. How does ionization enthalpy vary along a (i) group (ii) period, and why ? 	2
3.	Explain what you mean by Hybridization. Give the details of different hybridization, bond angle and shape of molecules.	10
4.	 a. Explain the bonding in H₂ molecule with the help of Molecular Orbital theory. b. Explain the shape of following molecule with VSEPR theory, SF₄, H₂O, NH₃, XeF₂ and PCl₅. 	5x2=10
5.	 a. State and derive de Broglie's equation. b. Write the distinction between matter waves and electromagnetic waves. c. The kinetic energy of an electron has been found to be 5.76x10⁻¹⁵ J. Calculate the wave length associated with the electron. d. Calculate the effective nuclear charge at the periphery of chromium atom. 	3+2+3+2=10
6.	 a. Discuss the basis of Hund's rule. b. What are the difference between the energy level diagram of hydrogen atom and that of a multi electron atom? c. State and explain Zeeman effect. d. What are the conditions of an eigen wave function? 	2+3+2+3=10
7.	 a. Discuss the postulates of quantum mechanics or wave mechanics. b. Complete and balance the following redox reaction (i) MnO_{4⁻} + SO_{3²⁻} + H⁺ → (ii) Cr₂O_{7²⁻} + NO_{2⁻} + H⁺ → c. Define disproportionation reaction with examples. 	4+4+2=10
8.	a. Explain why the boiling points of hydrides of the first member of any group higher than that of the second member.	3+3+4=10

- **b.** What is hydrogen bonding? Explain the necessary conditions for the formation of hydrogen bond.
- c. How does Band theory explain metallic bonding?

= = *** = =