2014/01

M.Sc. CHEMISTRY
First Semester
Physical Chemistry
(MSC - 03)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive)=50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

1. Answer the following questions: (any five)

 $2 \times 5 = 10$

- a) What do you mean by wave particle duality? Explain.
- b) Discuss the effect of temperature on the surface tension of a liquid.
- c) Define critical micellization concentration (CMC) of a surfactant. Discuss the micellization phenomena.
- d) What is meant by excluded volume? Show that excluded volume, b is four times the actual volume of the gas molecules.
- e) Derive the expression for the root mean square velocity from Maxwell's distribution for molecular velocities.
- f) Discuss the role of zeta potential in floccullation of colloidal systems.
- g) What do you mean by functionality of a monomer? What is the functionality of Tartaric acid?

2. Answer the following questions: (any five)

 $3 \times 5 = 15$

- a) Define linear operator. Show that the operator ∇^2 is linear.
- b) Deduce Schrodinger wave equation.
- c) Show that during adsorption of H_2 gas as hydrogen atoms on the surface of Ni, the adsorption isotherm becomes: $\theta = \frac{(\kappa_p)^{\frac{1}{2}}}{[1+(\kappa_p)^{\frac{1}{2}}]}$ where the symbols have their usual meanings.
- d) For a 1.0 x 10^{-4} M aqueous solution of n-butanoic acid, $\frac{d\gamma}{dc} = -0.08$ N m² m c¹⁻¹, at 25 °C, Using Gibbs adsorption equation, determine the surface excess of butanoic acid and also calculate the average surface excess of butanoic acid.
- e) Explain the term coefficient of viscosity of a fluid. Show that the viscosity of a gas is independent on pressure.
- f) For O_2 gas, the root mean square velocity at T_1 , the average velocity at T_2 is equal to 2.5 x 10^3 m s⁻¹. Calculate T_1 and T_2 .
- g) Discuss the principal of osmometry for determination of molecular weight of a polymer.

3. Answer the following questions: (any five)

 $5 \times 5 = 25$

- a) State the condition of orthogonality and normalization of two wave functions and examine the orthogonality of the functions $\Psi_1 = x$ and $\Psi_2 = x^2$ over the interval $-K \le x \le K$, where K is a constant.
- b) Define Hermitian operator. Prove that the eigen functions of a hermitian operator having different eigen values are orthogonal.
- c) The following data have been obtained with the adsorption of nitrogen on active charcoal at 273 K at a series of pressures.

P (mm Hg)	3.93	12.98	22.94	34.01	56.23
v (ml/	0.987	3.04	5.08	7.04	10.31
gm)					

Verify Langmuir isotherm and determine the values of the constants a and b.

- d) Discuss briefly BET theory of multilayer adsorption. Write the BET equation and explain the terms involved in the equation.
- e) Use the van der Waals equation of state to calculate the pressure exerted by exactly 1 mol of gaseous ammonia, NH₃, held at a temperature of 1000 K in a vessel of volume 2.50 dm³. The values of the van der Waals parameters for ammonia are a = 4.225 atm dm⁶ mol⁻² and $b = 3.71 \times 10^{-2}$ dm³ mol⁻¹.
- f) Discuss the origin of charge on colloidal particles. Describe briefly the electrical properties of colloids.
- g) Discuss the kinetics of free radical chain polymerisation.

M.Sc. CHEMISTRY **First Semester Physical Chemistry** (MSC - 03)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes Marks - 20

PART A- Objective Type

- 1. Select and put ' $\sqrt{}$ ' mark on the appropriate answer: $1 \times 20 = 20$
 - 1) An orbital is:
 - (a) a circular tract of an electron in an atom
 - (b) a one electron wave function
 - (c) an observable property of the system
 - (d) a hermitian operator
 - As per the uncertainty principle, Δx . Δp_x is equal to 2)
 - (a) H
- (b) $h/2\pi$
- (c) \(\lambda\)
- 3) The wave function in quantum mechanics represents:

 - (a) a state of a system (b) probability of the system
 - (c) shape of the system
- (d) energy of the system
- The lowest energy is equal to zero for:
 - (a) the hydrogen atom
 - (b) a rigid rotor
 - (c) a harmonic oscillator
 - (d) a particle in a three dimensional box
- 5) Among the following which one is not the correct expression for de-Broglie relationship:
 - (a) $h = \lambda x p$
 - (b) $\frac{h}{v} = \lambda \times m$
 - (c) $E_{kinetic} = \frac{hv}{2\lambda}$
 - (d) $E_{kinetic} = \frac{2hv}{2}$

- 6) Which of the following is NOT a correct assumption of Langmuir adsorption isotherm:
 - (a) The solid surface is homogeneous and contains a fixed number of adsorption site
 - (b) Each site can adsorb more than one molecule
 - (c) The adsorbed gas behaves ideally in the vapour phase
 - (d) There is no interaction between the adsorbed molecules
- 7) For a physisorption process which of the following statement is NOT correct?
 - (a) There are van der Waals interaction between the adsorbate and adsorbent
 - (b) The process predominates at low temperature
 - (c) The process cannot proceed beyond a monolayer
 - (d) The process is reversible
- 8) The excess pressure inside a liquid drop, ΔP is given as (Young-Laplace equation):

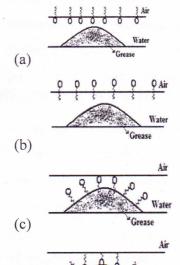
(a)
$$\gamma (r_1 + r_2)$$

(b)
$$\gamma (r_1 - r_2)$$

(b)
$$\gamma (r_1 - r_2)$$
 (c) $\gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ (d) $\gamma \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$

(d)
$$\gamma \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

9) A surface active agent form aggregates in nonpolar medium, which is termed as:


(a) Micelles

(b) Reverse micelles

(c) Microemulsion

(d) colloids

10) Which of the following describes the interaction of the surfactant molecule, — in a system composed of grease and water?

(d)

11) The second virial coefficient of ammonia, NH₃, is -40.4 cm³ mol⁻¹ at 600 K. What does this imply about the nature of the interactions between the molecules at this temperature?

- (a) The interactions between molecules are attractive.
- (b) The interactions between molecules are negligible
- (c) Nothing. The value of the virial coefficient is unrelated to the molecular interactions
- (d) The interactions between the molecules are repulsive

15) In a van der Waals gas the (a) RT	e term which acc (b) V-b	ounts for intermolecular forces (c) $P + a/V^2$	s is: (d)(RT) ⁻¹	
16) Dispersion of a liquid in a (a) hydrosol, aerosol, en (c) emulsion, aerosol, hydrosol	nulsion	rater, and a liquid in a liquid an (b) aerosol, hydrosol, emuls (d) hydrosol, emulsion, aeroso	sion	
17) The kinetic chain length, (a) $\frac{rate\ of\ initiation}{rate\ of\ propagation}$				
(b) $\frac{rate\ of\ initiation}{rate\ of\ termination}$				
(c) $\frac{rate\ of\ termination}{rate\ of\ propagation}$				
(d) $\frac{rate\ of\ propagation}{rate\ of\ termination}$				
18) The number-average mole respectively by:(a) osmometry and visco (b) osmometry and light	osity measuremen		$(\overline{M_w})$ of a polymer are obta	ined
(c) ultracentrifuge and v (d) viscosity and light so 19) Which of the following is	iscosity measure cattering measure	ments		
(a) $\frac{ln\eta_r}{c}$ (b) $\frac{ln\eta_{sp}}{c}$				
(c) $\left(\frac{\ln \eta_{sp}}{c}\right)_{C \to 0}$ (d) $\left(\frac{\ln \eta_{sp}}{c}\right)_{C \to \infty}$		· · · · · ·		
(a) $\overline{D_p} = \frac{1+p}{1-p}$	degree of polym	erisation, $\overline{D_p}$ and extent of read	ction, p is given as:	
(b) $\overline{D_p} = \frac{1}{1+p}$ (c) $\overline{D_p} = \frac{1}{1-p}$				
$(d) \overline{D_p} = \frac{1}{(1-p)^2}$	*	***		

12) If at same temperature and pressure, the densities for two diatomic gases are respectively d₁ and d₂, then

(c) d_1d_2

(c) $H_2 > O_2 > N_2$

(c) Pressure

(d) $\sqrt{d_1d_2}$

(d) $N_2 > O_2 > H_2$

(d) energy

the ratio of velocities of sound in these will be:

14) The product PV of a gas has the same units as:

(a) $H_2 > N_2 > O_2$

(a) Force

(b) $\sqrt{\frac{d_2}{d_1}}$

13) The average speed of H_2 , N_2 and O_2 gas molecules are in the order:

(b) $O_2 > N_2 > H_2$

(b) Force/area