BACHELOR OF COMPUTER APPLICATION SECOND SEMESTER DISCRETE MATHEMATICS

BCA - 203

	(VI 6 1 1 1 - Scient		
Dı	(Use Separate Answer Scripts furation: 3 hrs.	for Objective & Descriptive)	Full Marks: 70
Ti	me : 20 min.	<u>Objective</u>)	Marks: 20
0	Thoose the correct answer from t	he following:	1X20=20
1.	A graph consisting of only isolated vertices a. 1	is chromatic b. 4 d. 2	
2.	Every tree with two or more vertices is a. 2 c. 3	chromatic b. 4 d. 1	
3.	If $f:R \to R$ is defined by $f(x) = x^2 - 3x + 5$ ther a. $\{1,2\}$ c. 3	b. 5 d. {-2,5}	
4.	If $A = \{ x: x^2 - 5x + 6 = 0 \}$, $B = \{ 2, 4 \}$, $C = \{ 4, 5 \}$, a. $\{ (3,2) \}$ c. $\{ (2,4) \}$	find (A-B)x (B-A) b. {(2,3)} d. {(4,2)}	
5.	A and B be two sets having two elements in $(x B) \cap (B \times A) = $ a. 15 c. 5	common. If n(A)=5 and n(b. 3 d. 4	B)=3, then n {(A
6.	If '*' is a binary operation in Q* defined by positive rational). If (Q*, *) is an abelian groat. 4/a c. 2		
7.	If R is a Boolean ring then, R is ari a. Associative c. Commutative	ng b. Distributive d. Division	
8.	The statement p→(q →p) is a a. tautology c. contingency	b. Contradiction d. None of these	
9.	The statement \sim (p \wedge q) is logically equivalent a. \sim p \wedge \sim q c. (p vq)	nt to b. ~p V ~q d. (~p ^ q)	

10. If $n P_4 = 2x^5 P_3$ then $n =$				
a. 4	b. 15			
c. 10	d. 5			
11. If ${}^{20}C_r = {}^{20}C_{r+6} = 11$, then $r =$				
a. 7	b. 20			
c. 6	d. 26			
12. A is a set S with relation R on S which is reflexive , anti-symmetric and				
transitive.	b. Partially ordered set			
a. Equivalence relation c. Both (a) and (b)	d. None of these			
13. A lattice (L, \wedge , v) is called a lattice if it satisfies the following condition $x \le z$: $(y \wedge z) = (x \vee y) \wedge z$				
a. Distributive	b. Commutative			
c. Associative	d. Modular			
14. If L is a distributive lattice, then it is a	lattice			
a. Modular	b. Commutative			
c. Associative	d. Absorption law			
15. Write down the domain of the relation R ,	where R={(
(x, y): x and y are integers, $(xy = 4)$	h (1 2 4)			
a. {-2, 2, 1, -1, 4, -4}	b. {1,2,4}			
c. {-4, 4}	d. { -2, 2, 1, 4, -4 }			
16. A tree in which one vertex is distinguished from all the other vertices is called a tree				
a. Binary	b. Rooted			
c. Spanning	d. None of these			
17. In a complete graph K ₈ , the number of edges is				
a. 64	b. 28			
c. 56	d. 8			
18. If the function f and g are given by $f = \{ (1,2), (3,5), (4,1) \}$ and $g = \{ (2,3), (5,1), (1,3) \}$, then $gof = $				
a. { (1,3), (3,1), (4,3) }	b. { (3,1), (1,3), (3,4)}			
c. { (2,5), (5, 2), (5,1) }	d. { (5, 2), (2,5), (1,5)}			
19. A tree contains at least vertices				
a. One	b. Two			
c. Three	d. Four			
20. The number of points and lines in the comp	lete bipartite graph K _{3,4} is and			
a. 9,16	b. 3,7			

c. 7,12

d. 4,7

PART-B: Descriptive

Time: 2 hrs. 40 min. Marks: 50

1. Prove that the complete graph of five vertices is non-planar

[Answer question no.1 & any four (4) from the rest]

•	Trove that the complete graph of five vertices is non-planar	
2.	a. Define Euler and Hamiltonian graphs with figures .	5+5=10
	b.Prove that a tree T with 'n' vertices has 'n-1' edges .	
3.	 a. A committee of 5 is to be formed out of 6 gents and 4 ladies. In how many ways this can be done, when (a) at least 2 ladies are included; (b) at most 2 ladies are included 	3+3=6
	b.Let f: $R \rightarrow R$: $f(x) = 8 x^3$ and $g: R \rightarrow R$: $g(x) = x^{1/3}$ Find : (i) fog (ii) g o f	2+2=4
4.	a. Solve the recurrence relation $a_n = -3a_{n-1}+10\ a_{n-2}$, for $n \ge 2$ with the initial conditions $a_o = 1$ and $a_1 = 4$.	5+5=10
	b.Solve the recurrence relation by using the generating function $a_n=3a_{n-1}$, $n\geq 1$,with the initial conditions: $a_o=1$	
5.	a. How many permutations can be formed by the letters of the word," TRIANGLE"? How many of these will begin with T and end with E	5
	b.Define injective and surjective function . Show that the function $f: R \to \{\sqrt{2}\}$ defined by $f(x) = x/(x^2 - 2)$, $x \ne \sqrt{2}$ is surjective but not injective .	1+1+3 =5
6.	a. What do you mean by Hasse diagram of a poset? Let $P = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ be ordered by the relation 'a divides b'. Draw the Hasses diagram of P	5
	b.In a distributive lattice L, for any a, b, c \in L , prove that	5

 $(a \ V \ b) \land (b \ V \ c) \land (c \ V \ a) = (a \land b) \ V (b \land c) \ V (c \land a)$

10

a. Prove that a lattice is a partial ordered set
b. Define:
i. Spanning tree

ii. Binary tree iii. Planar graph

8. a. Verify whether the following propositions are tautology , 3+3=6 contradiction and contingency

(i) $(p \land q) \rightarrow (p \lor q)$

(ii) $\sim p \wedge (p \wedge q)$

b. In an examination , a candidate has to pass in each of the 5 subjects . In how many ways can he fail?

== *** = =

4