SET

Δ

M.Sc. MATHEMATICS **FOURTH SEMESTER** DYNAMICAL SYSTEM

MSM-404B | SPECIAL REPEAT| USE OMR FOR OBJECTIVE PARTI

Duration: 3 hrs.

Full Marks:70

Time: 30 min.

Objective

Marks:2

Choose the correct answer from the following:

1X20=26

1.

The linear system of equation

$$y = -2x - 2y$$

have

- a. Spiral source
- c. Saddle point

- b. Spiral sink
- d. None

If x^* is an equilibrium point for the equation $\frac{dx}{dt} = f(x)$ then, x^* is a sink if

a.
$$f'(x^*) > 0$$

b.
$$f'(x^*) < 0$$

d. None

If
$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n$$

Where a_1, a_2, \ldots are real coefficients and then the Hurwitz matrix is

a.
$$H_2 = \begin{bmatrix} a_1 & 1 \\ a_3 & a_2 \end{bmatrix}$$

b.
$$H_2 = \begin{bmatrix} a_1 & 1 \\ a_2 & a_2 \end{bmatrix}$$

c. Both A and B

If $P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n$ then all the roots of the polynomial $P(\lambda)$ are negative or have negative real part iff the determinants of the all Hurwitz matrices are

a. Positive

b. Negative

c. Zero

d. None

If the coefficients of the characteristic pa. negative c. Both A and B
For a non linear system unequal and both are a. Unstable node c. Repeller
The linear system of
have a Stable node c Stable point
For a non linear system complex having negation. Spiral Sink c. Both A and B
For a linearised system and equal then the system $\lambda_1 = \lambda_2 < 0$ c. Both A and B
In Lyapunov theorem
then for global stabili a. Negative c. Negative definite
If x is an equilibrium
a. Semi stable point Needs further inv

he above characteristic polynomial $\,P(\lambda)\,$ are positive then roots oolynomial are

- b. Having negative real part
- d. None

em of dynamical system if the eigen values $\,\lambda_{1}^{}$ and $\,\lambda_{2}^{}$ are real, positive then the equilibrium point is

- b Source
- D All of the above

$$x = -4x + y$$
f equation

$$y = 3x - 2y$$

- B Unstable node
- D None

em of dynamical system if the eigen values λ_1 and λ_2 are ative real part then the equilibrium point is

- b. Stable spiral
- d. None

em of dynamical system if the eigen values λ_1 and λ_2 are real ystem is unstable at origin if $b. \quad \lambda_1 = \lambda_2 > 0$ $d. \quad \text{None}$

b.
$$\lambda_1 = \lambda_2 >$$

n if V(x,t) be the Lyapunov function

ity V(x,t) must be

- b. Positive
- d. Positive definite

m point for the equation $\frac{dx}{dt} = f(x)$ and if $f'(x^*) = 0$ then

- b. Unstable
- estigation
- d. All of the above

$$x = -2x - 6y + 8$$
The following linear system of equation

The following linear system of equation

$$y = 8x + 4y - 12$$

have

a. Spiral source

c. Unstable sink

b. Spiral node

13. If x^* is an equilibrium point for the equation $\frac{dx}{dt} = f(x)$ then, x^* is a sink if

a.
$$f'(x^*) > 0$$

b. $f'(x^*) < 0$

c. Both A and B

d. None

14. For a matrix $\,A\,$ the characteristic equation or polynomial is given by

a.
$$|A - \lambda I| = 0$$

b. $A - \lambda I = 0$

c. $|A - \lambda I| \neq 0$

d. None

15. Sink is an equilibrium point up to which the solution curve of a system

a. Seems to converge as $t \rightarrow \infty$

b. Sufficiently close as $t \rightarrow \infty$

c. Asymptotic as $t \rightarrow \infty$

16. If
$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n$$

Where a_1, a_2, \ldots are real coefficients and then the Hurwitz matrix is

a.
$$H_1 = [a_1]$$

b. $H_1 = [a_2]$

c. $H_1 = [a_3]$

d. None

For a linearised system of dynamical system if the eigen values λ_1 and λ_2 are real and equal then the system is asymptotically stable at origin if

a.
$$\lambda_1 = \lambda_2 < 0$$

b. $\lambda_1 = \lambda_2 > 0$

c. Both A and B

For a non linear system of dynamical system if the eigen values λ_1 and λ_2 are real. unequal and both are negative then the equilibrium point is

a. Stable node

b. Sink

c. Attractor

d. All of the above

The linear system of equation .

y = 3x + 4y

- have
 a. Stable source
 c. Saddle point

- b. Unstable node
- d. None of the above

For a non linear system of dynamical system if the eigen values λ_1 and λ_2 are complex having real part zero then the equilibrium point is a. Center b. Nutral center

- c. Stable center

- d. All of the above

Descriptive

Time: 2 hrs. 30 mins.

Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. Discuss the following models with equilibrium points, stability analysis constructing lyapunov function . also draw the graph and phase diagram

10

 \dot{G} = -aG-bI+ α E+ δ

$$\dot{I} = cG - dI + \eta$$

$$\dot{E} = \beta E (1 - \gamma E)$$

2. Consider the system

10

$$\frac{dx}{dt} = x(1 - x + ky - k)$$

$$\frac{dy}{dt} = y(1 - y + ky - k)$$

where k is a constant different from 1 and -1.

The system above has exactly one equilibrium point (a,b) in the first quadrant with a>0 and b>0. Find this equilibrium point and Jacobian matrix

3. The interaction of two species of animals is modeled by

10

$$dx/dt = x(2-x+y)$$

$$dy/dt = y(4-x-y)$$

for
$$x \ge 0$$
, $y \ge 0$

Sketch a phase portrait for this system. Make sure your sketch shows clearly the nullcines and the equilibria

4.	State and prove Lyapunov stability theorem	10
5.	Write a note on hyperbolic and non-hyperbolic equilibrium with different types of examples	10
6.	There is one equilibrium point (a,b) with a>0 and b>0. Find the Jacobian matrix J of the system mentioned in Q.No2 at the point.	10
7.	Elaborate saddle point and spiral with example showing graph.	10
8.	Define with example: a. Stable b. Locally Stable c. Locally Asymptotically Stable d. Globally Stable	10

== *** = =