2023/06 ## SET ## BIOINORGANIC & INORGANIC PHOTOCHEMISTRY MSC-401B USE OMR FOR OBJECTIVE PARTI M.Sc. CHEMISTRY **FOURTH SEMESTER** Duration: 3 hrs. Full Marks: 70 Objective) Time: 30 min. Choose the correct answer from the following: ' Marks: 20 1X20 = 20 The physical structure of cells are - a. Living cells that organelles and enclosed by membranes - b. The concentration of specific elements may vary greatly different compartments The cytoplasm which contains the DNA and most of the material used and - transformed in the biochemical reaction - d. All of the above - 2. Choose the correct statement - a. Ferritin is the principal store of non haem Fe in animals - b. It occurs in all types of organism from mammals to prokaryotes - c. In mammals it is found particularly in the spleen and in blood - d. All of the above - 3. Which of the following is correct statement for iron Sulphur clusters Iron Sulphur cluster generally operate at more negative potentials than - cytochrome - b. They are composed of low spin Fe(III) - c. They are mainly in Octahedral environment - d. All of the above - 4. Choose the correct statement - a. The oxygenated haemoglobin is called oxyhaemoglobin - b. Both myoglobin and haemoglobin are paramagnetic - c. The five coordinated high spin present in haemoglobin and myoglobin - d. All of the above - In Sodium Potassium pump - a. Both Na+ and K+ ions act as cofactors of ATPase enzyme - b. The osmotic pressure and fluid balance of the cell is well maintained - c. Both (a) and (b) - d. None of the above - Which of the following is correct statement? Siderophores are small polydentate Siderophores have a very high - ligand - c. Both (a) and (b) - affinity for Fe(III) - d. None of the above | | ne b. Pyruvate kir d. None of the | |--|--| | | loit the high nucl
b. Octahedral (
d. None of the | | | b. Cytochrome d. None of the | | | b. Oxidation ofd. None of the | | Terminal peptide bond in pentide | b. Histidine ind. None of the | | Helicobactor pylori is a spiral bacterium four a. Stomach | nd in b. Lungs d. None of the | | | observed in coob. Linkage isom | | Replacement of both ammonia and | mode of photoaq b. Replacement d. None of the a | | | eer-Lambert Law
b. $A = \varepsilon b$
d. $A = \varepsilon cl$ | | Which of the following is an organometallic of a. Methotrexate c. Gold sodium thiomalate | drug used in the b. Celecoxib d. Ibuprofen | | | ovide contrast er
b. Magnetic suse
d. Paramagnetis | | 73.47.73.3 | ılcer
b. Li
d. Ag(I) | | [2] | | nase above. cleophilicity of Cobalt (II) above C above H₂O above a peptide chain above. above. ordination complexes? nerism above quation of trans of a chloride ion above v? treatment of arthritis? enhancement in MRI? sceptibility ism USTM/COE/R-01 - 19. lithium is - a. anti-alargicc. Both a and b - b. Mood stabilizerd. None of the above - 20. What is the primary mechanism behind the delayed emission of light in phosphorescence? a. Absorption and re-emission of photons b. Radiative decay of excited photons - c. Non-radiative decay of excited states - b. Radiative decay of excited states - d. $\frac{\text{Transition between different spin}}{\text{states}}$ ## $\left(\underline{\underline{Descriptive}}\right)$ Time: 2 hrs. 30 mins. Marks: 50 ## [Answer question no.1 & any four (4) from the rest] | 1. | a. Write the function of Sodium and Potassium pump. b. "Cadmium is normally regarded as highly toxic, is now regarded as being essential nutrient for certain organisms" - elucidate. c. Write name and structures of three anti-cancer drugs. | | |----|--|------------------| | 2. | | 5+5=1(| | 3. | a. Explain the function, occurrence and structure of haemoglobin and myoglobin.b. Discuss about the following selective transport and storage of iron (i) Siderophores (ii) Ferritin | 5+5=10 | | 4. | a. Discuss the mechanism of zinc -enzymes in terms of two limiting cases with regard to catalytic specific acid base reactions.b. Give a plausible mechanism for the action of acotinase, based on structural, kinetic and spectroscopic evidence. | 5 | | 5. | a. Illustrate the role of Mo-enzymes in direct oxygen transfer for sulphite oxidase.b. Why is a cobalt-based macrocylic complex rather than an iron complex like haem, is well suited for radical based rearrangement? | 5 | | 6. | a. Discuss the role of alkaline phosphatase to catalytic zinc centres.b. What is quantum yield? Give one example of photoredox reaction.c. What is role of contrast agent in MRI? Give examples.d. How malaria is treated with organometallic drug. | 2
2
3
3 | | 7. | a. What type of reaction observed by photolysis of [Co(CN) ₅ Br] ³⁻ in presence of SCN- ligand? Write down the products. | 3 | | | b. What do you mean by photoisomerisation reaction? Give example. | 3 | | | c. Explain why [Co(H ₂ O) ₆] ³⁺ and [Cr(NH ₃) ₆] ³⁺ do not undergo ligand substitution easily in thermal condition but they undergo photochemical substitution easily. | 4 | | 8. | a. Explain in detail how organometallic anticancer drug kills
cancerous cells? | 4 | | | b. What is iron overload? Explain with example how this disease is treated. | 3 | | | c. Which disease can be treated with gold containing organometallic drugs? Explain in detail how they work? | 3 |